
Design Principles behind Beauty and Joy of Computing

Paul Goldenberg
EDC

Waltham, MA, USA
pgoldenberg@edc.org

June Mark
EDC

Waltham, MA, USA
jmark@edc.org

Brian Harvey
UCB

Berkeley, CA, USA
bh@cs.berkeley.edu

Al Cuoco
EDC

Waltham, MA, USA
acuoco@edc.org

Mary Fries
EDC

Waltham, MA, USA
mfries@edc.org

ABSTRACT
This paper shares the design principles of one Advanced Placement
Computer Science Principles (AP CSP) course, Beauty and Joy of
Computing (BJC), both for schools considering curriculum, and for
developers in this still-new field. BJC students not only learn about
CS, but do some and analyze its social implications; we feel that the
job of enticing students into the field isn’t complete until students
find programming, itself, something they enjoy and know they can
do, and its key ideas accessible. Students must feel invited to use
their own creativity and logic, and enjoy the power of their logic
and the beauty and elegance of the code by which they express it.
All kids need genuine challenge and sensible support so all can have
the joy of making—seeing themselves as creators, not just consum-
ers, and seeing that it is their own intellect, not just our instructions,
that is the source of that making. Framework standards are woven
into a consistent social and intellectual storyline to give the curric-
ulum integrity.

Principles guide even our choice of programming language. Learn-
ers should focus on the logic and structure of their thinking, not on
misplaced semicolons; attention to such syntactic detail is antithet-
ical to broadening participation. We feature recursion and higher-
order functions because they beautifully exemplify abstraction, a
key idea in CS and the CSP framework.

BJC also places significant emphasis on the social implications of
computing, balancing fundamental optimism about computing
technology with a critical view of specific uses of technology.

KEYWORDS: CS education, Curriculum Design, Advanced
Placement, Computer Science Principles

ACM Reference format:

Paul Goldenberg, June Mark, Brian Harvey, Al Cuoco, Mary Fries. 2020.
Design principles behind Beauty and Joy of Computing. In The 51st ACM

Technical Symposium on Computer Science Education (SIGCSE’20), March
11–14, 2020, Portland, OR, USA. ACM, NewYork, NY, USA, 7 pages. ACM,
New York, NY, USA, 7 pages https://doi.org/10.1145/3328778.3366794

1 Introduction
The National Science Foundation (NSF) and College Board (CB) in-
troduced the Advanced Placement Computer Science Principles (AP
CSP) course to broaden participation in CS by appealing to high
school students who didn’t see CS as an inviting option—especially
female, black, and Latinx students who have been typically un-
derrepresented in computing. The AP CSP course was the center-
piece of an NSF-led initiative (CS10K) to train 10,000 high school
teachers to teach CS [1, 2]. After pilots at college and high-school
levels, CSP became an official AP course during 2016–17 with the
first CSP exam given in May 2017 [3, 4, 5]. The CSP framework spec-
ifies six computational thinking practices and seven conceptual Big
Ideas central to the study of computer science [6]. To support adop-
tion of CSP, the NSF and other organizations funded several projects
to develop curriculum materials aligned to the framework and to
provide professional development for teachers to learn about cur-
ricular options and about pedagogical practices that support equita-
ble CS instruction, and to plan for implementation and use in their
schools [7].

The Beauty and Joy of Computing (BJC) curriculum was designed
as a version of AP CSP that would meet these goals with strategi-
cally more emphasis on programming than the framework requires.
CB-endorsed, BJC has been revised over the past four school years
as part of an NSF-funded partnership among Education Develop-
ment Center (EDC); University of California, Berkeley (UCB); the
NYC Department of Education (NYCDOE); CSNYC (now CSforAll);
and NCSU (North Carolina State University). BJC began as an un-
dergraduate introduction to CS for non-majors at UCB [8]. High
school teachers who knew of it saw its appeal and potential for their
students, and some adapted it for their own use. But to spread suc-
cessfully in high school, the college structure (e.g., hour lectures and
unlimited lab time with TAs) and resources (e.g., lack of teacher
guide, assessments, differentiated learning) required change.

The NSF’s call for developing instances of such a course was an op-
portunity to revise the undergraduate BJC for wide use in high
schools. To this end, UCB partnered with EDC, NYCDOE, NCSU,
and CSNYC to redesign the student materials; create professional
development, guides for teachers, and support for implementation;
research the implementation of the materials and programs; and pe-
riodically report back to the field.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE '20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-6793-6/20/03…$15.00
https://doi.org/10.1145/3328778.3366794

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

220

Given the range of options—now, a dozen curricula, varying in ap-
proach, all aligned with the framework [9] and endorsed by CB—we
want to share with schools, in the same spirit as [10], the underlying
design principles as schools consider these programs.

When we originally proposed this work, we believed that most of
our attention would be on the structural elements and supplemen-
tary resources while course-content changes would only be needed
for compliance with the AP CSP framework [7]. We also anticipated
cleaning up writing and style, but only in a small way. In fact, things
turned out quite differently.

By the time we were examining the student materials closely
enough to fine-tune lesson by lesson, we began to see ways in which
the epistemology did not reflect our principles, and we began to fo-
cus as much on issues of pedagogy and emphasis as on structure,
resources, and compliance. The result is now one of the CB-
endorsed curricula for the AP CSP course and exam.

What’s to be learned from curriculum designers? By the time
a curriculum reaches schools, the result often hides the thought, dis-
cussion, decisions about content and pedagogy, initial crafting, tri-
als, revision, editing, and so on that went into its development, and
the many contributors—content specialists, writers, classroom
teachers, students, advisors, page designers, illustrators, editors,
evaluators, and others—who tug in different directions. The process
elements—having a vision and articulating it clearly, brainstorming,
outlining, writing, designing format and layout, editing, field test-
ing, revising, striving for equity, teaching in the classroom, assuring
usability by teachers, assessing student progress, meeting required
standards,accounting for sustainability, and more—interact in com-
plex ways. A myriad of decisions must be made, all of which collec-
tively determine the final product.

What guides the decisions? There are non-negotiables: content mat-
ter must not be factually wrong, text must be readable by the in-
tended audience, and standards/frameworks can’t be ignored. But
otherwise, there are few absolutes. While there are certainly wrong
ways to proceed, there are many right ways. Our aim here is to clar-
ify what kinds of decisions must be made, illustrate how we came
to particular ones, and show how philosophy, assumptions, and
“high-level” decisions can affect curriculum design, in some cases
right down to matters of “low-level” page-craft. The paths from vi-
sion to page and from principle to implementation are messy. We
doubt that many visions survive whole by the time they’ve gone
through the meat-grinder of what, for now, we’ll just call “practi-
calities.” The result often imperfectly represents the principles that
were to guide it, but examining the principles can help guide other
development.

All the principles we list below derive from our fundamental belief
that curriculum inevitably teaches more than its list of contents [11,
12, 13, 14]. Its organization and pedagogy also teach a point of view.
For example, explanation followed by practice teaches a very differ-
ent way of thinking than experience and experimentation followed
by formalization and consolidation. Content can be arranged to em-
phasize theory or application, or the historical development or other
features of a discipline. Without close attention to message, a

curriculum can make everything from small details to major ideas
seem equally important.

In BJC, our absolute top-level goal is broadened participation in com-
puter science. All by itself, that goal dictates several things. At a min-
imum, such a curriculum must avoid biases in culture, intellectual
or social interest, or accessibility that exclude students even implic-
itly. It must also be computer science. It must present real but man-
ageable challenge so that students feel the fun and exhileration of
competence and confidence that they can “do” computer science.
That is, our way to serve the top-level goal is to entice students with
the pleasure and sense of agency programmers feel when they use
their own creativity and logic to make things, and to let them enjoy
the power of their own logic and the beauty and elegance of the
code they create to express it.

To accomplish this, BJC emphasizes programming more than the
AP CSP standards require. Simple code and basic CS ideas can do
part of that but, in our experience, big ideas (e.g., recursion and
higher order functions) and their power can be presented accessibly.
These ideas, not just coding or its products, can fascinate students
and catch their interest. Of course, there are many big CS ideas—
abstraction, algorithms, parallel processing, distributed processing,
object-oriented programming, the concept (and techniques) of de-
bugging, and so on. Because it is impossible to teach them all
equally, we had to make decisions both about what to teach and
about how to teach.

2 Pedagogical design principles
To broaden participation, we must consider how we teach as well
as what we teach: believe in students, build experience, organize
around big ideas, let them learn by doing, provide beauty and joy.

Design with conviction that all kids can do challenging
things. Reaching a historically excluded audience can tempt cur-
riculum writers to assume that reduced contact renders the new
audience less capable than those who have already joined the club
without invitation or accommodation. That assumption is de-
structive. Yes, people who have been excluded from CS (whether
from external bias or from their own expectations) have often
been implicitly or explicitly excluded from advantages in other
subjects, too, with consequent background gaps. And, yes, many
underrepresented kids are also students whose native language is
not English and, therefore, find heavy text a barrier. So we try to
keep text light and limit prerequisite special knowledge, but with-
out limiting challenge or depth. One principle of our curriculum
development is that all kids can do challenging things, and that all
can figure out a great deal on their own. Because pace inevitably
differs—sometimes because deep interest slows kids down to ex-
periment more or speeds them up to find the next surprise, and
sometimes because of hurdles that change how kids work—we
must provide approaches that are genuine challenges to all kids;
we must also provide sensible support so all students can experi-
ence the joy of making, and the joy of seeing that it is their own
intellect, not our instructions, that is the source of that making.

Experience before formality. This epistemological principle
has guided our curriculum development in mathematics and in

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

221

programming for decades [15, 16, 17]. Roughly, it involves giving
students enough varied experience with a concept to let them cre-
ate the abstraction, the concept, themselves, saving technical de-
tails like vocabulary, definition, variations, and so on until
students have built the basic concept. BJC employs this use-mod-
ify-create [18] paradigm. For example, very early in BJC, students
load a fully-functioning project with three pieces of code:

, , .
They click on each, using each to see what it does. The gossip block
reports a simple sentence. Then students open the blocks up to ex-
amine their structure (fig. 1). The structure is simple and the behav-
ior they’ve seen in their experiments tells them what the code
means. This is analogous to how children learn their native lan-
guage, from use in context. Students modify the code—initially in an
almost trivial way—personalizing it with their own content.

A second gossiper (fig. 2) with a different vocabulary, not yet seen
by the students, sparks curiosity and leads to new learning but is
still simple and clear. Some students use the pattern they see to
make the second gossiper invoke the first again, leading to a recur-
sive back and forth. Despite having deliberately introduced a call
back to the first gossiper, some students are surprised by the con-
tinued behavior; some anticipate only one extra step, and not a re-
curring one. Long before we formally “teach” recursion, students
(possibly just by accident) invent it themselves, though not yet with
a way to control it. A lot has happened in just this one early lesson.
Students encounter lists (arrays), multiple agents each with its own
script, some control structure and event handling. They can modify
these purposively before receiving formal instruction. And they
have opportunities for surprise that build curiosity. Consolidation,
extension, and explanation—formalizing the knowledge—all come

Figure 1: The definitions of who, does what, and gossip.

Then they try a two-block script.
The behavior is a surprise (fig 2).

Figure 2: Two sprites gossiping with different vocabulary.

later after students have had time to explore ideas in the context of
remixing an established project.

Ideally, each tool/technique is encountered in a more than one con-
text, partly to feed the diversity of student interests—language, art,
mathematics, building games or quizzes…. Encountering the same
tool/technique in multiple contexts also shows that it is not single-
purpose; it lets students abstract out the utility of the tool precisely
so that they can extend it to their own purposes. For example, in
this first stage of the gossip project, the use of lists is basic: at this
point, a list is just a repository for content selected at random; no
indexing, no construction of the list, no mapping over the list. But
the idea grows to handle more complex language and to patch to-
gether parts of words. Students create a block that appends s to the
end of a noun, then improve it so that it does a better job of making
plurals than just adding s. (Optionally, students use the same tech-
niques to conjugate a verb in Spanish or another language of their
choice.) The higher order function map lets them apply their plu-
ralizer to a test-list of nouns. Lists keep appearing in different
ways—lists of coordinate pairs, lists of embedded lists, lists of run-
nable blocks—and the powerful tools that process lists, like mapping
a function over a list, or applying a predicate to all items of a list,
and keeping only those items that fit—appear in semantically clear,
syntactically simple contexts.

Students encounter recursive processes early before studying the
structure of recursion in any formal way. They may have seen the
back-and-forth caused by introducing broadcast to the second
sprite. They definitely replace the second who in gossip with more
complicated who (fig. 3) which introduces a conditional, and then
they replace one of the first two whos inside more complicated who
with more complicated who, try gossip a few more times, and de-
scribe the surprising result.

Figure 3: Introducing a condition
and an informal opportunity for recursion

Preserve all required details, but organize around big ideas.

Curriculum teaches more than content. When a constraint (e.g., a
framework requirement) requires what feels like a loose factoid or
a distraction from our goals (e.g., broader participation, personal
power, important and beautiful ideas) we must find a way to meet
the constraint in an intellectually or socially worthy context. Ignor-
ing frameworks is no option; a curriculum that schools can’t accept
is ineffective; but weaving each standard into a consistent social or
intellectual storyline gives a curriculum integrity.

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

222

The same principle guides the choice of programming language. If
students are to experience the power and intellectual beauty of pro-
gramming, then logic, not syntactic detail, must be the focus. In
many text-based languages, a program can be completely logical in
structure but fail to work because of a misplaced semicolon. Though
professionals may have to develop skill at searching for syntax er-
rors, we believe that is not where any beginners’ attention should
be, and is especially antithetical to broadening participation. Choos-
ing Snap! as our language for instruction and work focuses students’
coding and debugging time on the logic and strategies of program-
ming, not syntax. Snap! is essentially Scheme [19] disguised as
Scratch [20]. On the one hand, it is a sophisticated programming
language with advanced logic and power—recursion, higher-order
functions, complex data structures (including lists that can contain
numbers, words, other lists, and even blocks of code), object- ori-
ented programming, and lambda—and has been applied even in
commercial settings. On the other hand, its visual, blocks-based in-
terface nearly eliminates syntactic fussiness; its visual metaphors
make powerful ideas accessible even to beginners. And research
supports such a choice: students in blocks-based classes outperform
students in otherwise comparable text-based classes and express
greater interest in future computing courses [21, 22].

Learning by doing. To a first approximation, CS is a body of
knowledge and ways of thinking that help people create hardware
and algorithms for solving problems like programming a machine
to sort mountains of data or understand natural language or learn
from “experience.” CS also builds languages that let people program
to create things, tools for productivity, health, games, science, art….
Programing is inherently creative, and learning to program is, by
nature, hands on. That experience of making things, therefore,
should be a big part of our students’ experience.

Designing learning around projects doesn’t mean that the objective
is the project. If that were the goal, Lego-like instructions, explicit
steps to get a lovely result, would suffice. Instead, we want students
to learn how to do their own projects—ones we have not thought
of—to experience “I can create,” “I can solve problems,” “I can pro-
gram.” That means they need to learn tools and techniques that let
them improvise. To us, project-based means learning important
tools and techniques not by doing exercises on them but by building
things that need them. That helps us define “important techniques”:
ones that are re-usable. Some things we think are extremely cool
can’t be taught because they can’t be re-used within the limited time
we have. Showing many wonderful things, but giving students no
time to assimilate and own them seems fruitless to us.

Students see that their own work can always be extended and im-
proved. Some projects appear in stages. You can do this part now,
with what you know. Later, when you know more, you can add to
it. A more general message is that work is never “done, but bad”;
work that is not yet as one likes is simply not yet done. And there’s
no perfect state; things can always be revised.

Project orientation does not mean there are never etudes along the
way. Though we may generally strive for introducing new tech-
niques or tools in the context of needing them for some purpose we
are already engaged in, sometimes learning the new ideas needs to

be uncluttered with the camouflage of context and other techniques
or tools. In those cases, we try to present puzzles for kids to solve
using the new tool. This one, inspired by Vaniček [23], teaches pred-
icates by giving students code and a result to try to understand (fig
4), and then new designs to try to make by using and modifying
other predicates (fig 5).

BJC uses the same strategy to introduce the higher order function
keep, as students comb through a massive dictionary to create
a list of words that match clues for a word puzzle.

Puzzles need not be artificially crafted. They can be part of a project,
but abstracted from the whole so that the focus is on the new ele-
ment. Ultimately, to teach students how to think on their own, the
projects we present are incomplete, going only as far as the raw
functionality of the new elements we are teaching so that students
get the sense of what’s possible and the power they have to create
it, but leaving room for them to add their own features creatively.
We assure that they have all the essential tools (blocks), give them
some example, and then let them go.

Beauty and joy: helping students recognize, respect, grow,
and enjoy their own logic and creativity in CS. The esthetic of
programming is not just in its products; programs, themselves, can
have intellectual beauty. The classic text, Structure and Interpreta-
tion of Computer Programs [24] says it this way:

“To appreciate programming as an intellectual activity
in its own right […] you must read and write computer
programs—many of them. It doesn’t matter much what
the programs are about…. What does matter is how well
they perform and how smoothly they fit with other pro-
grams in the creation of still greater programs. The pro-
grammer must seek both perfection of part and
adequacy of collection.” (Emphasis ours.)

The CSP framework emphasizes creativity. To serve this goal and
build a sense of competence to pursue CS, our students experience
“doing CS” through more programming than the CB requires. To
help them feel “CS-smart,” students need to see their code not just
as a means to an end with an effect they like but as “poetry,” code
with structure, elegance and power. Programs represent students’
thinking, so the code, itself, should feel beautiful to students.

Achieving and appreciating beautiful code isn’t about being clever.
Cleverness is a local phenomenon that appears differently in each
student. Our goal is to help students express the beauty in their in-
sights, without having to worry about computerish details. We
want to let programming help them refine and add precision both
to their insights and to their expression. For example, there are
many ways to define a function that takes a list of numbers as input
and returns a list containing the squares of those numbers.

Figure 6 shows three methods for a squares of
block. Two closely mimic how students often de-
scribe their thinking; the third uses a style that
few students articulate

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

223

spontaneously. While attracting students to the field, we don’t push
particular techniques—students will, in time, develop their own
style and esthetic—but to develop a personal style, or even to notice
that there can be a poetry in programming, they need at least some
exposure to varied approaches to a single problem.

Figure 4: A script and its result.

Figure 5: A design and some predicates that might help.

Figure 6: Iterative, recursive, and higher-order function
approaches to processing a list.

Design for diversity by offering diversity and personaliza-
tion. A curriculum cannot be completely bias-free. The tone, con-
texts, even the content one chooses to highlight, all evince a point
of view that is not universal. Some curricula attempt inclusivity by
using culture-stereotypical names, contexts or activities—pop-social
images of “boy” and “girl” or “white” and “black” culture, or culture-
associated names. We think this is not a good way to be inclusive,
reduce bias, or broaden appeal. While such techniques explicitly sig-
nal acknowledgment of diverse groups and sensibilities, they do so
by invoking stereotypes: this project is here for girls; this name (os-
tentatiously) reflects your ethnicity.

So? Avoid imagery, style, or content that implicitly targets a group
pro or con. But there are also more subtle biases. We recall Barbara
Janson [25] describing her visit with a teacher group who knew that
the math text they had was rote, non-thinking junk, but saw no help
from the new materials they were shown because of the materials’
strong (liberal) cultural bias: boys doing dishes, “rain forest math,”
and so on. Though this bias probably wasn’t accidental (surely it
reflected a conscious concern of the university R&D teams that built
the curricula), its consequences included one that the developers
surely didn’t intend: It left some groups unserved. But even a naïve
accident can create bias. “Mary went to the clothing store with $200
and wanted to….” And of course cultural/political neutrality is also
a bias—a choice not to take certain stands, resulting in a bias toward
the status quo.

We take the deliberately non-neutral stand of aiming to attract and
serve the most underrepresented groups in CS. We actively recruit
to get kids in, then let word of mouth draw in more. The BJC prin-
ciple (not fully realized) is to appeal to a breadth of personal, social
and intellectual interests that cross race, gender, and economic lines
(mathematics, language, games, art, science…) and leave room for
students to put their own stamp on their work.

3 Content principles: Programming
Helping students see that they can “do” CS and enjoy it is one part
of our strategy. We also invite students beyond the entry points,
experiencing recursion and higher-order functions because of the
powerful and beautiful way they exemplify abstraction, a key idea
in CS and in the AP CSP framework. Such “advanced topics” are
often seen by others as too difficult for students, but Snap!’s explicit
visual representations make them more accessible. Seeing the com-
plexity of a fractal tree (or being taken by surprise by an astonish-
ingly long gossip) and seeing the simplicity of the recursive
procedure that produces it is an “aha!” that you don’t get from a
Google search, a video, making a poster in Photoshop, or even writ-
ing programs with no control structure more powerful than a loop.
We’ve mentioned some of these “extra content” choices before, so
this section will be light, but we want to clarify why we think these
matter even in an introductory CS experience.

The power of recursion. One important face of ab-
straction occurs when you notice that in some prob-
lems, parts mirror the same steps as the whole. For
example, in this design, seen very early in BJC with-
out complex trappings, whatever process draws the
red triangle and its blue children could conceivably let blue triangles

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

224

draw green children. After multiple early experiences that clarify
the idea, we teach recursion formally late in the course, analyzing
what enables it (the recursive call) and what stops it (base case) us-
ing both graphical (e.g., fractal trees) and list or number processing
(with memoization, if needed). Modeling the reasoning with a re-
cursive program helps develop such thinking.

Function as data. Another important face of abstraction occurs
when methods become objects. In mathematics, one engine for pro-
gress is that the methods of one generation become the objects of
study for the next. Like Scheme, Snap! implements “first class func-
tions.” Students first see functions as inputs with semantically clear
examples. Using map to test plural is one; here is another.

When students study recursion formally, they learn to build map.

The new idea here is that one of the inputs is a reporter (a function),
and its treated just like any other piece of data.

Mathematics as a tool. CSP is not a mathematics course, but
mathematical thinking is a valuable tool in programming. Basic al-
gebra can help make algorithms more efficient.

For example, in compounding interest, the double recursion algo-
rithm

balance ß balance + rate • balance

is inefficient. Elementary factoring increases efficiency. Similarly,
the use of coordinates and mod are often needed when working
with time or screen graphics. The perceived difficulty of some of
these ideas, we think, is partly an artifact of the languages and met-
aphors chosen and the contexts in which they are encountered.

4 Content principles: Social implications
A major element of BJC and of the AP CSP framework focuses on
the social implications of computing. To build students’ sense of
agency, we balance a fundamental optimism about the future of
computer technology with a critical stance toward each specific use,
focusing not just on the facts of the social implications, but also on
establishing particular perspectives, which include:

Social implications differ for different groups of people. To
talk broadly of technology’s “benefits and harms” papers over the
question of who benefits, who is harmed. We encourage students to
read critically, to ask themselves who wrote a text, and who benefits
if the text persuades them to a particular point of view.

Everyone can participate in developing technology policy.
Even apart from being the programmers, students learn that they
can control the development of new technologies simply by being
aware voters and consumers. BJC students read, discuss, and write
about issues of computing in society using the Blown to Bits book
[26] and regularly engage in “Computing in the News” activities, in
which students present a recent article about technology, and the
class asks clarifying questions and discusses implications.

Teaching social implications is not “teaching ethics.” Much of
the teaching about social topics, especially in K–12 but even at the
university level, takes the form of shalt-nots: Don’t download illegal
copies of movies and music. Don’t cyberbully. We prefer to respect
students as thoughtful social agents and to inform them about the
implications of technology for different stakeholders rather than to
lay down rules.

For example, students work in groups to try to develop a way for
authors to make a living from their work while still allowing the
unlimited downloading rights that many students want, and while
respecting the original public interest purpose of copyright. They
also consider how making movies, with a cast and crew of thou-
sands, needs a different financial model from making music, which
may be created by a single person.

5 Conclusion
Given the growth in interest in introducing and engaging K–12 stu-
dents in computer science, particularly among high school students,
many teams have designed materials to serve this goal, resulting in
diverse curricular options for teachers and schools to learn about
and choose among, all aligned with the new AP CSP framework and
endorsed by the College Board, but they vary in content and ap-
proach, and critically, in the guiding principles that undergird their
design. We share the guiding principles underlying one of these
AP CSP endorsed curricula to illuminate the rationale and craft be-
hind it, and to spark reflection and discussion about critical princi-
ples for AP CSP curricula. We encourage all those considering AP
CSP curricula to investigate the guiding principles of the different
curricular options, and to share these principles with teachers at PD
to inform teacher implementation. We also share positive results.
To date, 800 teachers have participated in BJC professional develop-
ment, with over 150 teachers trained in NYC. In addition, over 4400
BJC students nationally sat for the 2018 AP CSP exam. BJC4NYC
findings from ’16–17 and ’17–18 show that diversity increased,
teachers made statistically significant pre/post gains in content
knowledge, self-efficacy, self-rated programming ability, prepara-
tion/effectiveness, and knowledge/fluency, and students showed
significant pre/post gains on a content assessment, with small to
medium effect sizes [27, 28, 29]. Students’ 2017 AP CSP passing rates
also show encouraging results [30].

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

225

ACKNOWLEDGMENTS
This material is based upon work supported by the
National Science Foundation under Grants 1441075
and 1837280. Opinions, findings, and conclusions or
recommendations expressed here are those of the
author(s) and do not necessarily reflect views of the Foundation.

REFERENCES
[1] Jan Cuny. 2012. Transforming high school computing. ACM Inroads. 3, 2 (June

2012), 32-36.
[2] Owen Astrachan, Jan Cuny, Chris Stephenson, & Cameron Wilson. 2011. The

CS10K Project: Mobilizing the community to transform high school computing.
In Proceedings of the 42nd ACM Technical Symposium on Computer Science
Education (SIGCSE ’11). ACM Press, New York, NY, 85-86.

[3] Owen Astrachan & Amy Briggs. 2012. The CS Principles project. ACM Inroads.
3, 2 (June 2012), 38-42.

[4] Lawrence Snyder, Tiffany Barnes, Dan Garcia, Jody Paul, & Beth Simon, 2012.
The First Five Computer Science Principles Pilots: Summary and comparisons.
ACM Inroads. 3, 2 (June 2012), 54-71.

[5] Richard Kick, 2012. Computer Science Principles at Newbury Park High School,
ACM Inroads, 3, 2 (June 2012), 75-77.

[6] College Board. 2017. AP Computer Science Principles: Including the Curriculum
Framework (Fall 2017). Retrieved August 30, 2018 from https://apcentral.col-
legeboard.org/pdf/ap-computer-science-principles-course-and-exam-descrip-
tion.pdf

[7] Marie desJardins. 2015. Creating AP CS Principles: Let many flowers bloom.
ACM Inroads 6, 4 (Dec. 2015), 60-66. DOI: 10.1145/2835852

[8] Brian Harvey. 2012. The Beauty and Joy of Computing: Computer science for
everyone. In Constructionism: Theory, Practice, and Impact Conference Pro-
ceedings. Athens, Greece, 33-39.

[9] College Board. 2018. Computer Science Principles: Course details. Retrieved
Aug 30, 2018, https://advancesinap.collegeboard.org/stem/computerscience-
principles/course-details

[10] George Veletsianos, Bradley Beth, Calvin Lin, & Gregory Russell. 2016. Design
Principles for Thriving in Our Digital World: A high school computer science
course. J. Ed. Comp. Research. 54(4), 443-461.

[11] Albert A. Cuoco, E. Paul Goldenberg & June Mark. 2010. Organizing a curricu-
lum around mathematical habits of mind. Mathematics Teacher. 103(9) pp. 682-
688.

[12] Goldenberg, E. P., Mark, J., & Cuoco, A. (2010). Contemporary curriculum is-
sues: An algebraic-habits-of-mind perspective on elementary school. Teaching
Children Mathematics, 16(9), 548–556.

[13] Mark, J., Cuoco, A., Goldenberg, P. & Sword, S. (2010). Contemporary curricu-
lum issues: Developing mathematical habits of mind in the middle grades.
Mathematics Teaching in the Middle School. 15(9) pp. 505-509.

[14] Al Cuoco & E. Paul Goldenberg. 2011 Beyond Topics: Benchmarks for Judging
a High School Curriculum. Mathematics Teacher. 104(7), 486-488.

[15] EDC. CME Project: Curriculum. Retrieved from http://cmeproject.edc.org/cme-
project.

[16] E. Paul Goldenberg, June Mark, Jane M. Kang, Mary Fries, Cynthia J. Carter, and
Tracy Cordner. 2015. Making Sense of Algebra (1st. ed.). Extended Investiga-
tions for Students, Ch. 4. Heinemann, Portsmouth, NH.

[17] Bowen Kerins, Benjamin Sinwell, Darryl Yong, Al Cuoco, and Glenn Stevens.
2015. Mathematics for Teaching: A Problem Based Approach, Vol. 2: Applica-
tions of Algebra and Geometry to the Work of Teaching (1st. ed.). American
Mathematical Society.

[18] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson,
Joyce Malyn-Smith, & Linda Werner. 2011. Computational thinking for youth
in practice. ACM Inroads 2, 1 (Mar. 2011), 32-37. DOI:
https://doi.org/10.1145/1929887.1929902

[19] Brian Harvey & Matthew Wright. 1999. Simply Scheme: Introducing Computer
Science (2nd. Ed.). The MIT Press, Cambridge, MA.

[20] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, & Yasmin Kafai. 2009. Scratch: Programming for All. Commun. ACM
52, 11 (Nov. 2009), 60-67. DOI: https://doi.org/10.1145/1592761.1592779

[21] David Weintrop, Heather Killen, & Baker Franke. 2018. ICLS 2018 Proceedings.
328–335.

[22] David Weintrop & Uri Wilensky. 2017. Comparing block-based and text-based
programming in high school computer science classrooms. ACM Trans. on Com-
put. Educ. 18, 1, Article 3 (October 2017), 25 pages.

[23] Jiří Vaníček. 2018. Concept-building Oriented Programming Education. In Con-
structionism 2018: Constructionism, Computational Thinking and Educational
Innovation Conference Proceedings. Vilnius, 495-503.

[24] Harold Abelson, Gerald Jay Sussman, & Julie Sussman. 1996. Structure and in-
terpretation of computer programs (2nd. Ed.). MIT Press, Cambridge, MA.

[25] Barbara Janson, personal communication, NSF Gateways Conference, 1997.
[26] Harold Abelson, Ken Ledeen, & Harry R. Lewis. 2008. Blown to Bits: Your Life,

Liberty, and Happiness After the Digital Explosion. Addison-Wesley, Upper Sad-
dle River, NJ.

[27] Mary Fries. 2019. Beauty and Joy of Computing AP Computer Science Principles
for All. Presented at the 3rd. Computer Science Teacher Association New Eng-
land Regional Conference, (CSTA NERC
'19). https://cstanewenglandregionalconfe2019.sched.com/event/Vrso/beauty-
and-joy-of-computing-ap-computer-science-principles-for-all

[28] Education Development Center. 2017. Bringing a Rigorous Computer Science
Principles Course to the Largest School System in the United States, 2017 annual
project report submitted to the National Science Foundation.

[29] Education Development Center. 2018. Bringing a Rigorous Computer Science
Principles Course to the Largest School System in the United States, 2018 annual
project report submitted to the National Science Foundation.

[30] June Mark and Kelsey Klein. 2019. Beauty and Joy of Computing: 2016–17 Find-
ings from an AP CS Principles course. In Proceedings of the 50th ACM Tech-
nical Symposium on Computer Science Education, Minneapolis, Minnesota
USA, February-March 2019 (SIGCSE’19), 7 pages. DOI: 10.1145/3287324.3287375

Paper Session: CS0 SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

226

